Propositional Logic 3: Translation From Natural Language to Propositional Formulas – Problem in Propositional Inferences

Mathematical Logic - First Term 2023-2024

MZI

School of Computing Telkom University

Soc Tel-U

October 2023

October 2023

1 / 56

MZI (Soc Tel-U) Propositional Logic 3

Acknowledgements

This slide is compiled using the materials in the following sources:

- Discrete Mathematics and Its Applications (Chapter 1), 8th Edition, 2019, by
 K. H. Rosen (primary reference).
- Discrete Mathematics with Applications (Chapter 2), 5th Edition, 2018, by S. S. Epp.
- Logic in Computer Science: Modelling and Reasoning about Systems (Chapter 1), 2nd Edition, 2004, by M. Huth and M. Ryan.
- Mathematical Logic for Computer Science (Chapter 2, 3, 4), 2nd Edition, 2000, by M. Ben-Ari.
- Discrete Mathematics 1 (2012) slides in Fasilkom UI by B. H. Widjaja.
- Mathematical Logic slides in Telkom University by A. Rakhmatsyah and B. Purnama.

Some figures are excerpted from those sources. This slide is intended for internal academic purpose in SoC Telkom University. No slides are ever free from error nor incapable of being improved. Please convey your comments and corrections (if any) to pleasedontspam>@telkomuniversity.ac.id.

Contents

- Translation From Natural Language to Propositional Formulas
- 2 Case Study: System's Specifications Consistency
- Application of Formulas' Collection Consistency
- Elementary Propositional Inference
- Propositional Inference: Exercise
- 6 Problems in Propositional Inferences (Supplementary)

Contents

- Translation From Natural Language to Propositional Formulas
- Case Study: System's Specifications Consistency
- Opplication of Formulas' Collection Consistency
- 4 Elementary Propositional Inference
- 5 Propositional Inference: Exercise
- Problems in Propositional Inferences (Supplementary)

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

MZI (Soc Tel-U)

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The *semantics* (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

5 / 56

October 2023

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The semantics (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

I saw the man with the binoculars.

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The *semantics* (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

• I saw the man with the binoculars. (Who was using the binoculars?)

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The *semantics* (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

- I saw the man with the binoculars. (Who was using the binoculars?)
- 2 Sherlock saw the man with the binoculars.

5 / 56

October 2023

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The *semantics* (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

- I saw the man with the binoculars. (Who was using the binoculars?)
- Sherlock saw the man with the binoculars. (Who was using the binoculars?)

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The *semantics* (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

- I saw the man with the binoculars. (Who was using the binoculars?)
- ② Sherlock saw the man with the binoculars. (Who was using the binoculars?)
- Wanted: a nurse for a baby about twenty years old.

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The *semantics* (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

- I saw the man with the binoculars. (Who was using the binoculars?)
- ② Sherlock saw the man with the binoculars. (Who was using the binoculars?)
- Wanted: a nurse for a baby about twenty years old. (Who is 20 years old? The nurse or the baby?)

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The *semantics* (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

- ① I saw the man with the binoculars. (Who was using the binoculars?)
- ② Sherlock saw the man with the binoculars. (Who was using the binoculars?)
- Wanted: a nurse for a baby about twenty years old. (Who is 20 years old? The nurse or the baby?)
- They are hunting dogs.

Natural language is a language which is spoken, written, or signed (through visual or other forms) by human beings for general communication. It is a language which is developed by humans naturally through interactions that have occurred (or might occur in the future).

Examples of natural language: bahasa Indonesia, Javanese, English, French, Arabic, and any other language that humans use in their daily life.

The *semantics* (or the meaning) of natural languages sentences are influenced by the users.

Example

In your opinion, what are the meaning of the following sentences:

- I saw the man with the binoculars. (Who was using the binoculars?)
- Sherlock saw the man with the binoculars. (Who was using the binoculars?)
- Wanted: a nurse for a baby about twenty years old. (Who is 20 years old? The nurse or the baby?)
- They are hunting dogs. (What does the speaker mean?)

MZI (Soc Tel-U)

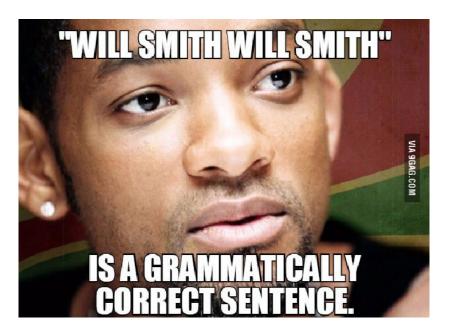
Sherlock saw the man using binoculars.

Sherlock saw the man using binoculars.

October 2023

8 / 56

MZI (Soc Tel-U) Propositional Logic 3



MZI (Soc Tel-U) Propositional Logic 3 October 2023 9 / 56

Formal Languages

Some English sentences are ambiguous, and because of this reason, natural language is not always suitable for describing software specifications.

Formal Languages

Some English sentences are ambiguous, and because of this reason, natural language is not always suitable for describing software specifications.

Formal language is a language that is constructed using a set of specific rules (called *syntax*) and each of the sentences constructed by this syntax has a particular meaning (called *semantics*). Formal language is created to reduce the ambiguity that occurs in natural languages.

Formal Languages

Some English sentences are ambiguous, and because of this reason, natural language is not always suitable for describing software specifications.

Formal language is a language that is constructed using a set of specific rules (called *syntax*) and each of the sentences constructed by this syntax has a particular meaning (called *semantics*). Formal language is created to reduce the ambiguity that occurs in natural languages.

Propositional logic and programming languages (such as: Pascal, C, C++, Python, Java) are examples of formal language. This kind of language is suitable for describing and developing software specification due to its logical clarity.

Exercise

Let p and q be following propositions:

```
p: "Alex is smart" q: "Alex is cute"
```

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- "It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1)

Exercise

Let p and q be following propositions:

```
p: "Alex is smart" q: "Alex is cute"
```

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- "It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1) $p \wedge q$, (2)

Exercise

Let p and q be following propositions:

p: "Alex is smart" q: "Alex is cute"

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1) $p \wedge q$, (2) $p \wedge \neg q$, (3)

Exercise

Let p and q be following propositions:

p: "Alex is smart" q: "Alex is cute"

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- "It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1) $p \wedge q$, (2) $p \wedge \neg q$, (3) $p \oplus q$ or

Exercise

Let p and q be following propositions:

```
p: "Alex is smart" q: "Alex is cute"
```

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- "It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1) $p \wedge q$, (2) $p \wedge \neg q$, (3) $p \oplus q$ or $(p \vee q) \wedge \neg (p \wedge q)$ or

Exercise

Let p and q be following propositions:

p: "Alex is smart" q: "Alex is cute"

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- "It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1) $p \wedge q$, (2) $p \wedge \neg q$, (3) $p \oplus q$ or $(p \vee q) \wedge \neg (p \wedge q)$ or $(p \wedge \neg q) \vee (\neg p \wedge q)$, (4)

11 / 56

MZI (Soc Tel-U) Propositional Logic 3 October 2023

Exercise

Let p and q be following propositions:

p: "Alex is smart" q: "Alex is cute"

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- "It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1) $p \wedge q$, (2) $p \wedge \neg q$, (3) $p \oplus q$ or $(p \vee q) \wedge \neg (p \wedge q)$ or $(p \wedge \neg q) \vee (\neg p \wedge q)$, (4) $\neg (p \vee q)$ or

MZI (Soc Tel-U) Propositional Logic 3 October 2023 11 / 56

Exercise

Let p and q be following propositions:

p: "Alex is smart" q: "Alex is cute"

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- "It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1) $p \wedge q$, (2) $p \wedge \neg q$, (3) $p \oplus q$ or $(p \vee q) \wedge \neg (p \wedge q)$ or $(p \wedge \neg q) \vee (\neg p \wedge q)$, (4) $\neg (p \vee q)$ or $\neg p \wedge \neg q$, (5)

October 2023

11 / 56

MZI (Soc Tel-U) Propositional Logic 3

Exercise

Let p and q be following propositions:

p: "Alex is smart" q: "Alex is cute"

Translate each of the following sentences in propositional formulas:

- "Alex is smart and cute"
- "Alex is smart, but he isn't cute"
- "Either Alex is smart or cute, but not both"
- "It is not true that Alex is smart or cute.
- "If Alex is smart, then he isn't cute"

Solution: (1) $p \wedge q$, (2) $p \wedge \neg q$, (3) $p \oplus q$ or $(p \vee q) \wedge \neg (p \wedge q)$ or $(p \wedge \neg q) \vee (\neg p \wedge q)$, (4) $\neg (p \vee q)$ or $\neg p \wedge \neg q$, (5) $p \rightarrow \neg q$.

Exercise

Express following statements in propositional formulas:

- "You can vote in the election if you are not under 17 years old, unless you have been married."
- $\ensuremath{\text{\textcircled{9}}}$ "You cannot have a driving license if your height is less than $140\,\mathrm{cm},$ unless you use a special car."
- If a student does not wear shoes or does not wear shirt, then he/she cannot participate in the exam."

For the first sentence, suppose p: "you can vote in the election", q: "you are under 17 years old", and r: "you have been married".

This sentence can be rewritten as:

For the first sentence, suppose p: "you can vote in the election", q: "you are under 17 years old", and r: "you have been married".

This sentence can be rewritten as:

• "If you can vote in the election, then

For the first sentence, suppose p: "you can vote in the election", q: "you are under 17 years old", and r: "you have been married".

This sentence can be rewritten as:

• "If you can vote in the election, then you are not under 17 years old or you have been married". Thus, we have the formula

For the first sentence, suppose p: "you can vote in the election", q: "you are under 17 years old", and r: "you have been married".

This sentence can be rewritten as:

• "If you can vote in the election, then you are not under 17 years old or you have been married". Thus, we have the formula $p \to (\neg q \lor r)$.

For the first sentence, suppose p: "you can vote in the election", q: "you are under 17 years old", and r: "you have been married".

- "If you can vote in the election, then you are not under 17 years old or you have been married". Thus, we have the formula $p \to (\neg q \lor r)$.
- Or in other form:

For the first sentence, suppose p: "you can vote in the election", q: "you are under 17 years old", and r: "you have been married".

- "If you can vote in the election, then you are not under 17 years old or you have been married". Thus, we have the formula $p \to (\neg q \lor r)$.
- Or in other form: "If you are under 17 years old and you have not been married, then you cannot vote in the election". Thus, we have the formula

For the first sentence, suppose p: "you can vote in the election", q: "you are under 17 years old", and r: "you have been married".

- "If you can vote in the election, then you are not under 17 years old or you have been married". Thus, we have the formula $p \to (\neg q \lor r)$.
- Or in other form: "If you are under 17 years old and you have not been married, then you cannot vote in the election". Thus, we have the formula $(q \land \neg r) \to \neg p$.

For the first sentence, suppose p: "you can vote in the election", q: "you are under 17 years old", and r: "you have been married".

- "If you can vote in the election, then you are not under 17 years old or you have been married". Thus, we have the formula $p \to (\neg q \lor r)$.
- Or in other form: "If you are under 17 years old and you have not been married, then you cannot vote in the election". Thus, we have the formula $(q \land \neg r) \to \neg p$.
- $p \to (\neg q \lor r)$ is equivalent to $(q \land \neg r) \to \neg p$

This sentence can be rewritten as:

• "If you can have a driving license, then

This sentence can be rewritten as:

• "If you can have a driving license, then your height is not less than $140\,\mathrm{cm}$ or you use special car".

This sentence can be rewritten as:

• "If you can have a driving license, then your height is not less than $140\,\mathrm{cm}$ or you use special car". Thus, we have the formula $p \to (\neg q \lor r)$.

- "If you can have a driving license, then your height is not less than $140\,\mathrm{cm}$ or you use special car". Thus, we have the formula $p \to (\neg q \lor r)$.
- Or in other form:

This sentence can be rewritten as:

- "If you can have a driving license, then your height is not less than $140\,\mathrm{cm}$ or you use special car". Thus, we have the formula $p \to (\neg q \lor r)$.
- \bullet Or in other form: "If your height is under $140\,\mathrm{cm}$ and you do not use special car, then you cannot have a driving license". Thus, we have the formula

- "If you can have a driving license, then your height is not less than $140\,\mathrm{cm}$ or you use special car". Thus, we have the formula $p \to (\neg q \lor r)$.
- Or in other form: "If your height is under $140\,\mathrm{cm}$ and you do not use special car, then you cannot have a driving license". Thus, we have the formula $(q \wedge \neg r) \to \neg p$.

- "If you can have a driving license, then your height is not less than $140\,\mathrm{cm}$ or you use special car". Thus, we have the formula $p \to (\neg q \lor r)$.
- Or in other form: "If your height is under $140\,\mathrm{cm}$ and you do not use special car, then you cannot have a driving license". Thus, we have the formula $(q \wedge \neg r) \to \neg p$.
- $p \to (\neg q \lor r)$ is equivalent to $(q \land \neg r) \to \neg p$.

This sentence can be rewritten as:

• "If a student does not wear shoes or does not wear shirt,

This sentence can be rewritten as:

• "If a student does not wear shoes or does not wear shirt, then he/she cannot participate in the exam". Thus, we have the formula

This sentence can be rewritten as:

• "If a student does not wear shoes or does not wear shirt, then he/she cannot participate in the exam". Thus, we have the formula $(\neg p \lor \neg q) \to \neg r$.

- "If a student does not wear shoes or does not wear shirt, then he/she cannot participate in the exam". Thus, we have the formula $(\neg p \lor \neg q) \to \neg r$.
- Or in other form:

This sentence can be rewritten as:

- "If a student does not wear shoes or does not wear shirt, then he/she cannot participate in the exam". Thus, we have the formula $(\neg p \lor \neg q) \to \neg r$.
- Or in other form: "If a student can participate in the exam, then he/she wears shoes and shirt". Thus, we have the formula $r \to (p \land q)$.

- "If a student does not wear shoes or does not wear shirt, then he/she cannot participate in the exam". Thus, we have the formula $(\neg p \lor \neg q) \to \neg r$.
- Or in other form: "If a student can participate in the exam, then he/she wears shoes and shirt". Thus, we have the formula $r \to (p \land q)$.
- $(\neg p \lor \neg q) \to \neg r$ is equivalent to $r \to (p \land q)$

Contents

- 🕕 Translation From Natural Language to Propositional Formulas
- 2 Case Study: System's Specifications Consistency
- Application of Formulas' Collection Consistency
- 4 Elementary Propositional Inference
- 5 Propositional Inference: Exercise
- Problems in Propositional Inferences (Supplementary)

Collection of Consistent Formulas

Collection of Consistent Formulas

Recall that a set/ collection of formulas $\{A_1,A_2,\ldots,A_n\}$ is consistent if there exists an interpretation $\mathcal I$ such that

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \cdots \mathcal{I}(A_n) = T.$$

Review the following problem.

System's Specifications Consistency Problem

A software engineer is inquired by his manager to develop an information system that complies following specifications:

Collection of Consistent Formulas

Collection of Consistent Formulas

Recall that a set/ collection of formulas $\{A_1,A_2,\ldots,A_n\}$ is consistent if there exists an interpretation $\mathcal I$ such that

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \cdots \mathcal{I}(A_n) = T.$$

Review the following problem.

System's Specifications Consistency Problem

A software engineer is inquired by his manager to develop an information system that complies following specifications:

- Whenever the system software is being upgraded, the user cannot access file system;
- If the user can access file system, then the user can save a new file;
- If the user cannot save a new file, then the system software is not being upgraded.

Are the above specifications consistent?

System's Specifications Consistency (1)

• To check the specifications' consistency, we first need to translate each of the specifications to its corresponding propositional formula.

MZI (Soc Tel-U)

System's Specifications Consistency (1)

- To check the specifications' consistency, we first need to translate each of the specifications to its corresponding propositional formula.
- In order to be consistent, the formulas must not contradictory to one another. This also means that the *conjunction* of the formulas must be true for some interpretation.

System's Specifications Consistency (1)

- To check the specifications' consistency, we first need to translate each of the specifications to its corresponding propositional formula.
- In order to be consistent, the formulas must not contradictory to one another. This also means that the *conjunction* of the formulas must be true for some interpretation.
- Therefore, if the systems consist of n specification formulas A_1, A_2, \ldots, A_n , then there must exist an interpretation \mathcal{I} such that

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \cdots = \mathcal{I}(A_n) = T.$$

MZI (Soc Tel-U)

As a result, the sentences describing the system specification can be written as

$$A_1 :=$$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \to \neg q$$

$$A_2 :=$$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \rightarrow \neg q$$

$$A_2 := q \to r$$

$$A_3 :=$$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \rightarrow \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \rightarrow \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

We now determine whether there exist an interpretation ${\mathcal I}$ such that

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) =$$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \to \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

We now determine whether there exist an interpretation \mathcal{I} such that $\mathcal{I}\left(A_{1}\right)=\mathcal{I}\left(A_{2}\right)=\mathcal{I}\left(A_{3}\right)=\mathrm{T}.$ Observe that, by choosing $\mathcal{I}\left(p\right)=$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \to \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

We now determine whether there exist an interpretation \mathcal{I} such that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = T$. Observe that, by choosing $\mathcal{I}(p) = F$, $\mathcal{I}(q) = F$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \to \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

We now determine whether there exist an interpretation \mathcal{I} such that $\mathcal{I}\left(A_{1}\right)=\mathcal{I}\left(A_{2}\right)=\mathcal{I}\left(A_{3}\right)=\mathrm{T}.$ Observe that, by choosing $\mathcal{I}\left(p\right)=\mathrm{F}$, $\mathcal{I}\left(q\right)=\mathrm{F}$, and $\mathcal{I}\left(r\right)=$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \to \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

We now determine whether there exist an interpretation \mathcal{I} such that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathrm{T}$. Observe that, by choosing $\mathcal{I}(p) = \mathrm{F}$, $\mathcal{I}(q) = \mathrm{F}$, and $\mathcal{I}(r) = \mathrm{T}$, we obtain

$$\mathcal{I}(A_1) = \mathcal{I}(p \to \neg q) =$$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \to \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

We now determine whether there exist an interpretation \mathcal{I} such that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathrm{T}$. Observe that, by choosing $\mathcal{I}(p) = \mathrm{F}$, $\mathcal{I}(q) = \mathrm{F}$, and $\mathcal{I}(r) = \mathrm{T}$, we obtain

$$\mathcal{I}(A_1) = \mathcal{I}(p \to \neg q) = F \to T = T$$

 $\mathcal{I}(A_2) = \mathcal{I}(q \to r) =$

As a result, the sentences describing the system specification can be written as

$$A_1 := p \to \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

We now determine whether there exist an interpretation \mathcal{I} such that $\mathcal{I}(A_1)=\mathcal{I}(A_2)=\mathcal{I}(A_3)=\mathrm{T}.$ Observe that, by choosing $\mathcal{I}(p)=\mathrm{F}$, $\mathcal{I}(q)=\mathrm{F}$, and $\mathcal{I}(r)=\mathrm{T}$, we obtain

$$\mathcal{I}(A_1) = \mathcal{I}(p \to \neg q) = F \to T = T$$

 $\mathcal{I}(A_2) = \mathcal{I}(q \to r) = F \to T = T$

 $\mathcal{I}(A_3) = \mathcal{I}(\neg r \to \neg p) =$

To answer the system's specifications consistency problem described previously, we need to translate the system specifications into propositional formulas. Suppose p: "system software is being upgraded", q: "the user can access file system", r: "the user can save a new file".

As a result, the sentences describing the system specification can be written as

$$A_1 := p \to \neg q$$

$$A_2 := q \to r$$

$$A_3 := \neg r \to \neg p$$

We now determine whether there exist an interpretation \mathcal{I} such that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = T$. Observe that, by choosing $\mathcal{I}(p) = F$, $\mathcal{I}(q) = F$, and $\mathcal{I}(r) = T$, we obtain

$$\mathcal{I}(A_1) = \mathcal{I}(p \to \neg q) = F \to T = T$$

$$\mathcal{I}(A_2) = \mathcal{I}(q \to r) = F \to T = T$$

$$\mathcal{I}(A_3) = \mathcal{I}(\neg r \to \neg p) = F \to T = T$$

Hence, we conclude that the system's specifications are consistent.

$$A_1 :=$$

$$A_1 := p \rightarrow \neg q, A_2 :=$$

$$A_1 := p \rightarrow \neg q$$
, $A_2 := q \rightarrow r$, $A_3 :=$

MZI (Soc Tel-U)

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

p	q	r	$\neg p$	$\neg q$	$ \neg r$	$A_1 = p \to \neg q$	$A_2 = q \to r$	$A_3 = \neg r \to \neg p$
1	1	1	0	0	0	0	1	1
1	1	0				'	•	'

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

The system specification is consistent if we can find an interpretation \mathcal{I} for each atomic proposition so that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = T$. We have the following truth table:

							$A_2 = q \to r$	$A_3 = \neg r \to \neg p$
1	1	1	0	0	0	0	1	1
1	1	0	0 0	0	1	0	0	0
1	0	1				,		

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

The system specification is consistent if we can find an interpretation \mathcal{I} for each atomic proposition so that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = T$. We have the following truth table:

p	q	r	$\neg p$	$\neg q$	$\neg r$	$A_1 = p \to \neg q$	$A_2 = q \to r$	$A_3 = \neg r \to \neg p$
1	1	1	0	0	0	0	1	1
1	1	Ω	Λ	Ω	1	0	0	0
1	0	1	0	1	0	1	1	1
1	0	0			'	ı	•	•

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

The system specification is consistent if we can find an interpretation \mathcal{I} for each atomic proposition so that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = T$. We have the following truth table:

p	q	r	$\neg p$	$\neg q$	$ \neg r$	$A_1 = p \to \neg q$	$A_2 = q \to r$	$A_3 = \neg r \to \neg p$
1	1	1	0	0	0	0	1	1
1	1	0	0	0	1	0	0	0
1	0	1	0	1	0	1	1	1
1	0	0	0	1	1	1	1	0
0	1	1			•	!	'	'

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

p	q	r	$\neg p$	$\neg q$	$\neg r$	$A_1 = p \to \neg q$	$A_2 = q \to r$	$A_3 = \neg r \to \neg p$
1	1	1	0	0	0	0	1	1
1	1	0	0	0	1	0	0	0
1	0	1	0	1	0	1	1	1
1	0	0	0	1	1	1	1	0
0	1	1	1	0	0	1	1	1
0	1	0		ı	'	ı	1	•

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

p	q	r	$\neg p$	$\neg q$	$\neg r$	$A_1 = p \to \neg q$	$A_2 = q \to r$	$A_3 = \neg r \to \neg p$
1	1	1	0	0	0	0	1	1
1	1	0	0	0	1	0	0	0
1	0	1	0	1	0	1	1	1
1	0	0	0	1	1	1	1	0
0	1	1	1	0	0	1	1	1
0	1	0	1	0	1	1	0	1
0	0	1		l	1	ı	ı	ı

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

The system specification is consistent if we can find an interpretation \mathcal{I} for each atomic proposition so that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = T$. We have the following truth table:

p	q	r	$\neg p$	$\neg q$	$\neg r$	$A_1 = p \to \neg q$	$A_2 = q \to r$	$A_3 = \neg r \to \neg p$
1	1	1	0	0	0	0	1	1
1	1	0	0	0	1	0	0	0
1	0	1	0	1	0	1	1	1
1	0	0	0	1	1	1	1	0
0	1	1	1	0	0	1	1	1
0	1	0	1	0	1	1	0	1
0	0	1	1	1	0	1	1	1
0	0	0		ı	'	!	1	'

$$A_1 := p \rightarrow \neg q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \rightarrow \neg p$$

The system specification is consistent if we can find an interpretation \mathcal{I} for each atomic proposition so that $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = T$. We have the following truth table:

p	q	r	$\neg p$	$\neg q$	$\neg r$	$A_1 = p \to \neg q$	$A_2 = q \to r$	$A_3 = \neg r \to \neg p$
1	1	1	0	0	0	0	1	1
1	1	0	0	0	1	0	0	0
1	0	1	0	1	0	1	1	1
1	0	0	0	1	1	1	1	0
0	1	1	1	0	0	1	1	1
0	1	0	1	0	1	1	0	1
0	0	1	1	1	0	1	1	1
0	0	0	1	1	1	1	1	1

Since there is at least one interpretation that makes

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = T$$
, then system specification is consistent.

4 D > 4 P > 4 E > 4 E > 9 Q Q

Exercise

Check whether the following system specifications are consistent or not: "The system is in multiuser state if and only if it is operating normally. If the system is operating normally, then the system kernel is functioning. The system kernel is not functioning or the system is in interrupt mode. The system is not in interrupt mode".

Solution:

Exercise

Check whether the following system specifications are consistent or not: "The system is in multiuser state if and only if it is operating normally. If the system is operating normally, then the system kernel is functioning. The system kernel is not functioning or the system is in interrupt mode. The system is not in interrupt mode".

Solution:

To translate the specifications, we first define the following atomic propositions:

Exercise

Check whether the following system specifications are consistent or not: "The system is in multiuser state if and only if it is operating normally. If the system is operating normally, then the system kernel is functioning. The system kernel is not functioning or the system is in interrupt mode. The system is not in interrupt mode".

Solution:

To translate the specifications , we first define the following atomic propositions: p: "system in multiuser state", q: "system is operating normally", r: "system kernel is functioning", and s: "system is in interrupt mode".

As a result, the specifications can be written as:

$$A_1 :=$$

Exercise

Check whether the following system specifications are consistent or not: "The system is in multiuser state if and only if it is operating normally. If the system is operating normally, then the system kernel is functioning. The system kernel is not functioning or the system is in interrupt mode. The system is not in interrupt mode".

Solution:

To translate the specifications , we first define the following atomic propositions: p: "system in multiuser state", q: "system is operating normally", r: "system kernel is functioning", and s: "system is in interrupt mode".

As a result, the specifications can be written as:

$$A_1 := p \leftrightarrow q, A_2 :=$$

Exercise

Check whether the following system specifications are consistent or not: "The system is in multiuser state if and only if it is operating normally. If the system is operating normally, then the system kernel is functioning. The system kernel is not functioning or the system is in interrupt mode. The system is not in interrupt mode".

Solution:

To translate the specifications , we first define the following atomic propositions: p: "system in multiuser state", q: "system is operating normally", r: "system kernel is functioning", and s: "system is in interrupt mode".

As a result, the specifications can be written as:

$$A_1 := p \leftrightarrow q, A_2 := q \rightarrow r, A_3 :=$$

Exercise

Check whether the following system specifications are consistent or not: "The system is in multiuser state if and only if it is operating normally. If the system is operating normally, then the system kernel is functioning. The system kernel is not functioning or the system is in interrupt mode. The system is not in interrupt mode".

Solution:

To translate the specifications , we first define the following atomic propositions: p: "system in multiuser state", q: "system is operating normally", r: "system kernel is functioning", and s: "system is in interrupt mode".

As a result, the specifications can be written as:

$$A_1 := p \leftrightarrow q$$
, $A_2 := q \rightarrow r$, $A_3 := \neg r \lor s$, $A_4 := \neg r \lor s$

←ロト→個ト→運ト→運ト 運 めなぐ

Exercise

Check whether the following system specifications are consistent or not: "The system is in multiuser state if and only if it is operating normally. If the system is operating normally, then the system kernel is functioning. The system kernel is not functioning or the system is in interrupt mode. The system is not in interrupt mode".

Solution:

To translate the specifications , we first define the following atomic propositions: p: "system in multiuser state", q: "system is operating normally", r: "system kernel is functioning", and s: "system is in interrupt mode".

As a result, the specifications can be written as:

$$A_1 := p \leftrightarrow q, \ A_2 := q \rightarrow r, \ A_3 := \neg r \lor s, \ A_4 := \neg s.$$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=\mathrm{F}$, $\mathcal{I}\left(r\right)=$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=\mathrm{F}$, $\mathcal{I}\left(r\right)=\mathrm{F}$, $\mathcal{I}\left(q\right)=$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=\mathrm{F}$, $\mathcal{I}\left(r\right)=\mathrm{F}$, $\mathcal{I}\left(q\right)=\mathrm{F}$, and $\mathcal{I}\left(p\right)=\mathrm{F}$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=\mathrm{F}$, $\mathcal{I}\left(r\right)=\mathrm{F}$, $\mathcal{I}\left(q\right)=\mathrm{F}$, and $\mathcal{I}\left(p\right)=\mathrm{F}$, we have

$$\mathcal{I}(A_1) = \mathcal{I}(p \leftrightarrow q) =$$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=\mathrm{F}$, $\mathcal{I}\left(r\right)=\mathrm{F}$, $\mathcal{I}\left(q\right)=\mathrm{F}$, and $\mathcal{I}\left(p\right)=\mathrm{F}$, we have

$$\mathcal{I}(A_1) = \mathcal{I}(p \leftrightarrow q) = T$$

 $\mathcal{I}(A_2) = \mathcal{I}(q \rightarrow r) =$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=\mathrm{F}$, $\mathcal{I}\left(r\right)=\mathrm{F}$, $\mathcal{I}\left(q\right)=\mathrm{F}$, and $\mathcal{I}\left(p\right)=\mathrm{F}$, we have

$$\mathcal{I}(A_1) = \mathcal{I}(p \leftrightarrow q) = T$$

 $\mathcal{I}(A_2) = \mathcal{I}(q \rightarrow r) = T$
 $\mathcal{I}(A_3) = \mathcal{I}(\neg r \lor s) =$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=\mathrm{F}$, $\mathcal{I}\left(r\right)=\mathrm{F}$, $\mathcal{I}\left(q\right)=\mathrm{F}$, and $\mathcal{I}\left(p\right)=\mathrm{F}$, we have

$$\mathcal{I}(A_1) = \mathcal{I}(p \leftrightarrow q) = T$$
 $\mathcal{I}(A_2) = \mathcal{I}(q \rightarrow r) = T$
 $\mathcal{I}(A_3) = \mathcal{I}(\neg r \lor s) = T$
 $\mathcal{I}(A_4) = \mathcal{I}(\neg s) = T$

$$\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$$
$$\mathcal{I}(p \leftrightarrow q) = \mathcal{I}(q \to r) = \mathcal{I}(\neg r \lor s) = \mathcal{I}(\neg s) = T$$

Observe that, by choosing $\mathcal{I}\left(s\right)=\mathrm{F}$, $\mathcal{I}\left(r\right)=\mathrm{F}$, $\mathcal{I}\left(q\right)=\mathrm{F}$, and $\mathcal{I}\left(p\right)=\mathrm{F}$, we have

$$\mathcal{I}(A_1) = \mathcal{I}(p \leftrightarrow q) = T$$
 $\mathcal{I}(A_2) = \mathcal{I}(q \rightarrow r) = T$
 $\mathcal{I}(A_3) = \mathcal{I}(\neg r \lor s) = T$
 $\mathcal{I}(A_4) = \mathcal{I}(\neg s) = T$

Hence, we conclude that the system's specifications are consistent.

$$A_1 :=$$

$$A_1 := p \leftrightarrow q, A_2 :=$$

MZI (Soc Tel-U)

$$A_1 := p \leftrightarrow q, A_2 := q \rightarrow r, A_3 :=$$

$$A_1 := p \leftrightarrow q$$
, $A_2 := q \rightarrow r$, $A_3 := \neg r \lor s$, $A_4 := \neg r \lor s$

$$A_1 := p \leftrightarrow q$$
, $A_2 := q \rightarrow r$, $A_3 := \neg r \lor s$, $A_4 := \neg s$

$$A_1 := p \leftrightarrow q$$
, $A_2 := q \rightarrow r$, $A_3 := \neg r \lor s$, $A_4 := \neg s$

p	q	r	s	$\neg r$	$\neg s$	$A_1 = p \leftrightarrow q$	$A_2 = q \to r$	$A_3 = \neg r \lor s$	$A_4 = \neg s$
1	1	1	1	0	0	1	1	1	0
1	1	1	0	0	1	1	1	0	1
1	1	0	1	1	0	1	0	1	0
1	1	0	0	1	1	1	0	1	1
1	0	1	1	0	0	0	1	1	0
1	0	1	0	0	1	0	1	0	1
1	0	0	1	1	0	0	1	1	0
1	0	0	0	1	1	0	1	1	1

p	q	r	s	$\neg r$	$\neg s$	$A_1 = p \leftrightarrow q$	$A_2 = q \rightarrow r$	$A_3 = \neg r \lor s$	$A_4 = \neg s$
0	1	1	1	0	0	0	1	1	0
0	1	1	0	0	1	0	1	0	1
0	1	0	1	1	0	0	0	1	0
0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	0	1	1	1	0
0	0	1	0	0	1	1	1	0	1
0	0	0	1	1	0	1	1	1	0
Ω	l n	0	n	1	1	1	1	1	1

24 / 56

p	q	r	s	$\neg r$	$\neg s$	$A_1 = p \leftrightarrow q$	$A_2 = q \to r$	$A_3 = \neg r \vee s$	$A_4 = \neg s$
0	1	1	1	0	0	0	1	1	0
0	1	1	0	0	1	0	1	0	1
0	1	0	1	1	0	0	0	1	0
0	1	0	0	1	1	0	0	1	1
0	0	1	1	0	0	1	1	1	0
0	0	1	0	0	1	1	1	0	1
0	0	0	1	1	0	1	1	1	0
0	0	0	0	1	1	1	1	1	1

Since there is at least one interpretation that makes

 $\mathcal{I}(A_1) = \mathcal{I}(A_2) = \mathcal{I}(A_3) = \mathcal{I}(A_4) = T$, then system specification is consistent.

MZI (Soc Tel-U)

Contents

- 🕕 Translation From Natural Language to Propositional Formulas
- 2 Case Study: System's Specifications Consistency
- Application of Formulas' Collection Consistency
- 4 Elementary Propositional Inference
- 5 Propositional Inference: Exercise
- Problems in Propositional Inferences (Supplementary)

Logic Puzzles

Formulas' collection consistency can be implemented to answer following problem.

Exercise (Knights and Knaves)

Inhabitants of an island can be divided into the knight and the knave. Knights always tell the truth, whereas knaves always tell a lie. In addition, the knights like to help people, while the knaves are notorious for their cannibalism.

One day, you are stranded on this island. Fortunately, you know that an inhabitant of this island is either a knight or a knave. You encounter two people, Pluck and Qluck. Pluck says, "At least one of us is a knave" and Qluck says nothing.

Can you determine who is the knight and/or who is the knave?

26 / 56

Exercise (The Bank Robbery)

Five convicts: Abby, Heather, Kevin, Randy, and Vijay, are suspected in a bank robbery. The police did not know exactly who among the five people were involved in the robbery. However, from credible sources, the police learned that the following facts are true:

- Either Kevin or Heather or both were involved in the robbery.
- One of Randy or Vijay, but not both, were involved in the robbery.
- If Abby robbed the bank, so did Randy.
- Vijay and Kevin were both involved in the robbery, or not at all.
- If Heather robbed the bank, then so did Abby and Kevin

Is it possible to determine who did rob the bank from the above information alone? If so, who did rob the bank?

Contents

- 🕕 Translation From Natural Language to Propositional Formulas
- Case Study: System's Specifications Consistency
- Application of Formulas' Collection Consistency
- Elementary Propositional Inference
- 5 Propositional Inference: Exercise
- Openition of the proposition of the proposition

Logical Argument

Logical Argument

A logical argument (or simply an argument) is a finite sequence of propositions.

All but the *final proposition* in the argument are called the *premises* (assumptions/hypotheses), while the last one is called the *conclusion*.

An argument is *valid/sound* if the truth of <u>all</u> its premises implies the truth of its conclusion

Logical Argument

Logical Argument

A logical argument (or simply an argument) is a finite sequence of propositions.

All but the *final proposition* in the argument are called the *premises* (assumptions/hypotheses), while the last one is called the *conclusion*. An argument is *valid/sound* if the truth of <u>all</u> its premises implies the truth of its conclusion.

From the above definition, an argument with premises p_1,p_2,\ldots,p_n and a conclusion q is valid when we have $(p_1\wedge p_2\wedge\cdots\wedge p_n)\Rightarrow q$, or in other words $(p_1\wedge p_2\wedge\cdots\wedge p_n)\to q$ is a tautology.

29 / 56

Elementary Propositional Inference Rules

The elementary rules of inference for propositional logic includes:

- modus ponens
- @ modus tollens
- double negation introduction
- double negation elimination
- hypothetical syllogism
- disjunctive syllogism
- addition/ disjunction introduction
- simplification
- conjunction
- resolution

30 / 56

Modus Ponens

Let p and q be propositions,

$$\begin{array}{c}
p \to q \\
\hline
p \\
\hline
\therefore q
\end{array}$$

Modus Ponens

Let p and q be propositions,

$$\begin{array}{c} p \to q \\ \hline p \\ \hline \therefore q \end{array}$$

Observe that $((p \to q) \land p) \to q$ is a tautology, hence we have $((p \to q) \land p) \Rightarrow q$.

Example

Modus Ponens

Let p and q be propositions,

$$\begin{array}{c} p \to q \\ \hline p \\ \hline \therefore q \end{array}$$

Observe that $((p \to q) \land p) \to q$ is a tautology, hence we have $((p \to q) \land p) \Rightarrow q$.

Example

If Andre studies in Bandung, then he lives in Indonesia.

Andre studies in Bandung.

Modus Ponens

Let p and q be propositions,

$$\begin{array}{c} p \to q \\ \hline p \\ \hline \vdots q \end{array}$$

Observe that $((p \to q) \land p) \to q$ is a tautology, hence we have $((p \to q) \land p) \Rightarrow q$.

Example

If Andre studies in Bandung, then he lives in Indonesia.

Andre studies in Bandung.

.: Andre lives in Indonesia.

Modus Tollens

Let p and q be propositions,

$$\begin{array}{c}
p \to q \\
 \neg q \\
\hline
 \therefore \neg p
\end{array}$$

Modus Tollens

Let p and q be propositions,

$$\begin{array}{c}
p \to q \\
\neg q \\
\hline
\vdots \neg p
\end{array}$$

Observe that $((p \to q) \land \neg q) \to \neg p$ is a tautology, hence we have $((p \to q) \land \neg q) \Rightarrow \neg p$.

Example

Modus Tollens

Let p and q be propositions,

$$\begin{array}{c}
p \to q \\
\neg q \\
\hline
\vdots \neg p
\end{array}$$

Observe that $((p \to q) \land \neg q) \to \neg p$ is a tautology, hence we have $((p \to q) \land \neg q) \Rightarrow \neg p$.

Example

If Andre studies in Bandung, then he lives in Indonesia.

Andre doesn't live in Indonesia

Modus Tollens

Let p and q be propositions,

$$\begin{array}{c}
p \to q \\
\neg q \\
\hline
\vdots \neg p
\end{array}$$

Observe that $((p \to q) \land \neg q) \to \neg p$ is a tautology, hence we have $((p \to q) \land \neg q) \Rightarrow \neg p$.

Example

If Andre studies in Bandung, then he lives in Indonesia.

Andre doesn't live in Indonesia

... Andre doesn't study in Bandung.

Double Negation Introduction

Let p be a proposition,

$$p$$

$$\therefore \neg \neg p$$

Double Negation Introduction

Let p be a proposition,

$$\frac{p}{\therefore \neg \neg p}$$

Observe that $p \to \neg \neg p$ is a tautology, hence we have $p \Rightarrow \neg \neg p$.

Example

Double Negation Introduction

Let p be a proposition,

$$p$$
 $\therefore \neg \neg p$

Observe that $p \to \neg \neg p$ is a tautology, hence we have $p \Rightarrow \neg \neg p$.

Example

Andre studies in Bandung

Double Negation Introduction

Let p be a proposition,

$$\frac{p}{\therefore \neg \neg p}$$

Observe that $p \to \neg \neg p$ is a tautology, hence we have $p \Rightarrow \neg \neg p$.

Example

Andre studies in Bandung

... It is not true that Andre doesn't study in Bandung.

33 / 56

Double Negation Elimination

Let p be a proposition,

$$rac{\neg \neg p}{\therefore p}$$

Double Negation Elimination

Let p be a proposition,

$$\frac{\neg \neg p}{\therefore p}$$

Observe that $\neg \neg p \to p$ is a tautology, hence we have $\neg \neg p \Rightarrow p$.

Example

Double Negation Elimination

Let p be a proposition,

$$\frac{\neg \neg p}{\therefore p}$$

Observe that $\neg \neg p \to p$ is a tautology, hence we have $\neg \neg p \Rightarrow p$.

Example

It is not true that Andre doesn't study in Bandung.

Double Negation Elimination

Let p be a proposition,

$$\frac{\neg \neg p}{\therefore p}$$

Observe that $\neg \neg p \rightarrow p$ is a tautology, hence we have $\neg \neg p \Rightarrow p$.

Example

It is not true that Andre doesn't study in Bandung.

... Andre studies in Bandung.

Hypothetical Syllogism

Let p, q, r be propositions,

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Hypothetical Syllogism

Let p, q, r be propositions,

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \vdots p \to r \end{array}$$

Observe that $((p \to q) \land (q \to r)) \to (p \to r)$ is a tautology, hence we have $((p \to q) \land (q \to r)) \Rightarrow (p \to r)$.

Example

Hypothetical Syllogism

Let p, q, r be propositions,

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Observe that $((p \to q) \land (q \to r)) \to (p \to r)$ is a tautology, hence we have $((p \to q) \land (q \to r)) \Rightarrow (p \to r)$.

Example

If Andre studies in Bandung, then he lives in Indonesia
If Andre lives in Indonesia, then he lives in planet Earth.

Hypothetical Syllogism

Let p, q, r be propositions,

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

Observe that $((p \to q) \land (q \to r)) \to (p \to r)$ is a tautology, hence we have $((p \to q) \land (q \to r)) \Rightarrow (p \to r)$.

Example

If Andre studies in Bandung, then he lives in Indonesia
If Andre lives in Indonesia, then he lives in planet Earth.

: If Andre studies in Bandung, then he lives in planet Earth.

4 D > 4 D > 4 D > 4 D > 5 9 9 9

Disjunctive Syllogism

Let p and q be propositions,

$$\begin{array}{c}
p \lor q \\
\neg p \\
\hline
\therefore q
\end{array}$$

Disjunctive Syllogism

Let p and q be propositions,

$$\begin{array}{c}
p \lor q \\
\neg p \\
\hline
\therefore q
\end{array}$$

Observe that $((p \lor q) \land \neg p) \to q$ is a tautology, hence we have $((p \lor q) \land \neg p) \Rightarrow q$.

Example

Disjunctive Syllogism

Let p and q be propositions,

$$\begin{array}{c}
p \lor q \\
\neg p \\
\hline
\therefore q
\end{array}$$

Observe that $((p \lor q) \land \neg p) \to q$ is a tautology, hence we have $((p \lor q) \land \neg p) \Rightarrow q$.

Example

Andre is a student or an employee.

Andre is not a student

Disjunctive Syllogism

Let p and q be propositions,

$$\begin{array}{c}
p \lor q \\
\neg p \\
\hline
\therefore q
\end{array}$$

Observe that $((p \lor q) \land \neg p) \to q$ is a tautology, hence we have $((p \lor q) \land \neg p) \Rightarrow q$.

Example

Andre is a student or an employee.

Andre is not a student.

... Andre is an employee.

Addition/ Disjunction Introduction

Addition/ Disjunction Introduction

Let p and q be propositions,

$$\frac{p}{\therefore p \vee q}$$

Addition/ Disjunction Introduction

Addition/ Disjunction Introduction

Let p and q be propositions,

$$\frac{p}{\therefore p \lor q}$$

$$\frac{q}{\therefore p \lor q}$$

Observe that $p \to (p \lor q)$ and $q \to (p \lor q)$ are tautology, hence we have $p \Rightarrow (p \lor q)$ and $q \Rightarrow (p \lor q)$.

Example

Addition/ Disjunction Introduction

Addition/ Disjunction Introduction

Let p and q be propositions,

$$\frac{p}{\therefore p \vee q}$$

$$\frac{q}{\therefore p \lor q}$$

Observe that $p \to (p \lor q)$ and $q \to (p \lor q)$ are tautology, hence we have $p \Rightarrow (p \lor q)$ and $q \Rightarrow (p \lor q)$.

Example

Andre is a student.

Addition/ Disjunction Introduction

Addition/ Disjunction Introduction

Let p and q be propositions,

$$\frac{p}{\therefore p \vee q}$$

$$rac{q}{\therefore p \lor q}$$

Observe that $p \to (p \lor q)$ and $q \to (p \lor q)$ are tautology, hence we have $p \Rightarrow (p \lor q)$ and $q \Rightarrow (p \lor q)$.

Example

Andre is a student.

... Andre is a student or a janitor.

Simplification/ Conjunction Elimination

Let p and q be propositions,

Simplification / Conjunction Elimination

Let p and q be propositions,

$$\begin{array}{c} p \wedge q \\ \therefore p \end{array} \qquad \begin{array}{c} p \wedge q \\ \vdots q \end{array}$$

Observe that $(p \wedge q) \to p$ and $(p \wedge q) \to q$ are tautology, hence we have $(p \wedge q) \Rightarrow p$ and $(p \wedge q) \Rightarrow q$.

Example

Simplification / Conjunction Elimination

Let p and q be propositions,

$$\frac{p \wedge q}{\therefore p} \qquad \qquad \frac{p \wedge q}{\therefore q}$$

Observe that $(p \wedge q) \to p$ and $(p \wedge q) \to q$ are tautology, hence we have $(p \wedge q) \Rightarrow p$ and $(p \wedge q) \Rightarrow q$.

Example

Andre studies at Tel-U and he lives in Bandung.

Simplification / Conjunction Elimination

Let p and q be propositions,

$$\frac{p \wedge q}{\therefore p}$$

$$p \wedge q$$
 $\therefore q$

Observe that $(p \wedge q) \to p$ and $(p \wedge q) \to q$ are tautology, hence we have $(p \wedge q) \Rightarrow p$ and $(p \wedge q) \Rightarrow q$.

Example

Andre studies at Tel-U and he lives in Bandung.

... Andre studies at Tel-U.

Simplification / Conjunction Elimination

Let p and q be propositions,

$$\frac{p \wedge q}{\therefore p}$$

Observe that $(p \wedge q) \to p$ and $(p \wedge q) \to q$ are tautology, hence we have $(p \wedge q) \Rightarrow p$ and $(p \wedge q) \Rightarrow q$.

Example

Andre studies at Tel-U and he lives in Bandung.

.: Andre studies at Tel-U.

We can also infer the "Andre lives in Bandung".

Conjunction / Conjunction Introduction

Let p and q be propositions,

$$\begin{array}{c}
p \\
q \\
\hline
\therefore p \land q
\end{array}$$

Conjunction / Conjunction Introduction

Let p and q be propositions,

$$\begin{array}{c}
p \\
q \\
\hline
\therefore p \land q
\end{array}$$

Observe that $(p \wedge q) \to (p \wedge q)$ is a tautology, hence we have $(p \wedge q) \Rightarrow (p \wedge q)$.

Example

Conjunction / Conjunction Introduction

Let p and q be propositions,

$$\begin{array}{c}
p \\
q \\
\hline
\therefore p \land q
\end{array}$$

Observe that $(p \land q) \to (p \land q)$ is a tautology, hence we have $(p \land q) \Rightarrow (p \land q)$.

Example

Andre studies at Tel-U.

Andre lives in Cimahi.

Conjunction / Conjunction Introduction

Let p and q be propositions,

$$\begin{array}{c}
p \\
q \\
\hline
\therefore p \land q
\end{array}$$

Observe that $(p \land q) \to (p \land q)$ is a tautology, hence we have $(p \land q) \Rightarrow (p \land q)$.

Example

Andre studies at Tel-U.

Andre lives in Cimahi.

... Andre studies at Tel-U and he lives in Cimahi.

Resolution

Let p,q,r, be propositions,

$$\begin{array}{c} p \lor q \\ \neg p \lor r \\ \hline \therefore q \lor r \end{array}$$

Resolution

Let p, q, r, be propositions,

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
\hline
\therefore q \lor r
\end{array}$$

Observe that $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$ is a tautology, hence we have $((p \lor q) \land (\neg p \lor r)) \Rightarrow (q \lor r)$.

Example

Resolution

Let p, q, r, be propositions,

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
\hline
\therefore q \lor r
\end{array}$$

Observe that $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$ is a tautology, hence we have $((p \lor q) \land (\neg p \lor r)) \Rightarrow (q \lor r)$.

Example

Andre is a student or a janitor

Andre is not a student or he is a lecturer.

Resolution

Let p, q, r, be propositions,

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
\hline
\therefore q \lor r
\end{array}$$

Observe that $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$ is a tautology, hence we have $((p \lor q) \land (\neg p \lor r)) \Rightarrow (q \lor r)$.

Example

Andre is a student or a janitor

Andre is not a student or he is a lecturer.

... Andre is a janitor or a lecturer.

- Resolution is an inference rule used by computer to perform automatic reasoning.
- In

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
\hline
\therefore q \lor r
\end{array}$$

 $q \vee r$ is called a *resolvent*.

- In resolution, all premises and conclusion are written in clause form.
- Clause: disjunction of propositional variables or negation of propositional variables (or their combination).

41 / 56

Contents

- 🕕 Translation From Natural Language to Propositional Formulas
- Case Study: System's Specifications Consistency
- Application of Formulas' Collection Consistency
- 4 Elementary Propositional Inference
- Propositional Inference: Exercise
- 6 Problems in Propositional Inferences (Supplementary)

42 / 56

Exercise

Verify whether the premises $p \lor q \to r \land s, \ s \lor t \to u$, and p lead to the conclusion u.

Exercise

Verify whether the premises $p \lor q \to r \land s, \ s \lor t \to u$, and p lead to the conclusion u.

$$algorates s \lor t \rightarrow u$$

Exercise

Verify whether the premises $p \lor q \to r \land s, \ s \lor t \to u$, and p lead to the conclusion u.

Solution:

$$algorates s \lor t \rightarrow u$$

$$p \lor q$$

(premise)

(premise)

(premise)

(addition from 3)

43 / 56

Exercise

Verify whether the premises $p \lor q \to r \land s, \ s \lor t \to u$, and p lead to the conclusion u.

Solution:

$$algorates s \lor t \rightarrow u$$

$$\bigcirc p \lor q$$

$$oldsymbol{0}$$
 $r \wedge s$

43 / 56

Exercise

Verify whether the premises $p \lor q \to r \land s, \ s \lor t \to u,$ and p lead to the conclusion u.

Solution:

$$algorates s \lor t \rightarrow u$$

$$\bigcirc p \lor q$$

$$oldsymbol{0}$$
 $r \wedge s$

(premise)

(premise)

(premise)

(addition from 3)

(modus ponens from 1 and 4)

(simplification from 5)

Exercise

Verify whether the premises $p \lor q \to r \land s, \ s \lor t \to u$, and p lead to the conclusion u.

$$algorates s \lor t \rightarrow u$$

$$0 p \lor q$$

$$r \wedge s$$

$$0$$
 $s \lor t$

Exercise

Verify whether the premises $p \lor q \to r \land s$, $s \lor t \to u$, and p lead to the conclusion u.

$$algorates s \lor t \rightarrow u$$

$$\bigcirc p \lor q$$

$$oldsymbol{1}$$
 $r \wedge s$

$$0$$
 $s \lor t$

Exercise

Suppose we have the premises: "it is not sunny today and it is colder than yesterday", "if we will go swimming, then it must be sunny today", "if we do not go swimming, then we will go hiking", "if we go hiking, then we will be home by sunset".

Verify whether the premises lead to the conclusion: "we will be home by sunset".

Exercise

Suppose we have the premises: "it is not sunny today and it is colder than yesterday", "if we will go swimming, then it must be sunny today", "if we do not go swimming, then we will go hiking", "if we go hiking, then we will be home by sunset".

Verify whether the premises lead to the conclusion: "we will be home by sunset".

Solution: suppose p: "it is sunny today", q: "it is colder than yesterday", r: "we will go swimming", s: "we will go hiking", t: "we will be home by sunset". Therefore, the premises can be rewritten as

Exercise

Suppose we have the premises: "it is not sunny today and it is colder than yesterday", "if we will go swimming, then it must be sunny today", "if we do not go swimming, then we will go hiking", "if we go hiking, then we will be home by sunset".

Verify whether the premises lead to the conclusion: "we will be home by sunset".

Solution: suppose p: "it is sunny today", q: "it is colder than yesterday", r: "we will go swimming", s: "we will go hiking", t: "we will be home by sunset". Therefore, the premises can be rewritten as

 $\neg p \land q$

Exercise

Suppose we have the premises: "it is not sunny today and it is colder than yesterday", "if we will go swimming, then it must be sunny today", "if we do not go swimming, then we will go hiking", "if we go hiking, then we will be home by sunset".

Verify whether the premises lead to the conclusion: "we will be home by sunset".

Solution: suppose p: "it is sunny today", q: "it is colder than yesterday", r: "we will go swimming", s: "we will go hiking", t: "we will be home by sunset". Therefore, the premises can be rewritten as

$$\neg p \land q$$

$$r \rightarrow p$$

44 / 56

Exercise

Suppose we have the premises: "it is not sunny today and it is colder than yesterday", "if we will go swimming, then it must be sunny today", "if we do not go swimming, then we will go hiking", "if we go hiking, then we will be home by sunset".

Verify whether the premises lead to the conclusion: "we will be home by sunset".

Solution: suppose p: "it is sunny today", q: "it is colder than yesterday", r: "we will go swimming", s: "we will go hiking", t: "we will be home by sunset". Therefore, the premises can be rewritten as

$$eg p \wedge q$$

$$r \rightarrow p$$

$$\neg r \rightarrow s$$

Exercise

Suppose we have the premises: "it is not sunny today and it is colder than yesterday", "if we will go swimming, then it must be sunny today", "if we do not go swimming, then we will go hiking", "if we go hiking, then we will be home by sunset".

Verify whether the premises lead to the conclusion: "we will be home by sunset".

Solution: suppose p: "it is sunny today", q: "it is colder than yesterday", r: "we will go swimming", s: "we will go hiking", t: "we will be home by sunset". Therefore, the premises can be rewritten as

$$\neg p \land q$$

$$r \to p$$

$$\neg r \to s$$

$$s \to t$$

We next verify whether these premises lead to the conclusion

Exercise

Suppose we have the premises: "it is not sunny today and it is colder than yesterday", "if we will go swimming, then it must be sunny today", "if we do not go swimming, then we will go hiking", "if we go hiking, then we will be home by sunset".

Verify whether the premises lead to the conclusion: "we will be home by sunset".

Solution: suppose p: "it is sunny today", q: "it is colder than yesterday", r: "we will go swimming", s: "we will go hiking", t: "we will be home by sunset". Therefore, the premises can be rewritten as

$$\neg p \land q$$

$$r \to p$$

$$\neg r \to s$$

$$s \to t$$

We next verify whether these premises lead to the conclusion t by using valid propositional inference. イロト イ部ト イミト イミト

44 / 56

- p

- (premise)
 - (premise)
 - (premise)
 - $(\mathsf{premise})$

- $\bigcirc \neg p \land q$
- p
- \bullet $s \rightarrow t$
- **⑤** ¬p

- (premise)
 - (premise)
- (premise)
- (premise)
- (simplification from 1)

- \bullet $\neg p \land q$
- $r \rightarrow p$

- **⑤** ¬p
- \bigcirc $\neg r$

- (premise)
 - (premise)
- (premise) (premise)
- (simplification from 1)
- (modus tollens from 2 and 5)

 \bullet $\neg p \land q$

p $r \rightarrow p$

 $\bullet r \rightarrow s$

 $0 s \rightarrow t$

⑤ ¬p

 \circ

a

(premise)

(premise)

(premise)

(premise) (simplification from 1)

(modus tollens from 2 and 5)

(modus ponens from 3 and 6)

- $\bigcirc \neg p \land q$
- $r \rightarrow p$
- $0 s \rightarrow t$
- **⑤** ¬p
- \bullet $\neg r$
- **a** 9
- 8 t

Therefore the conclusion t is valid.

(premise)
(premise)
(premise)
(premise)
(premise)
(simplification from 1)
(modus tollens from 2 and 5)
(modus ponens from 3 and 6)

(modus ponens from 4 and 7)

Exercise

Suppose we have the statements: "If Alice sends an assignment email to Bob, then Bob will finish his homework", "if Alice doesn't send an assignment email to Bob, then he will play computer until midnight", "if Bob plays computer until midnight, then he will be sleepy in Mathematical Logic class".

Verify whether the statements lead to the conclusion: "if Bob doesn't finish his homework, then he will be sleepy in Mathematical Logic class".

$$p \rightarrow q$$

$$\begin{array}{ccc} p & \to & q \\ \neg p & \to & r \end{array}$$

$$\begin{array}{ccc}
p & \to & q \\
\neg p & \to & r \\
r & \to & s
\end{array}$$

We next verify whether these premises lead to the conclusion

$$\begin{array}{ccc}
p & \to & q \\
\neg p & \to & r \\
r & \to & s
\end{array}$$

We next verify whether these premises lead to the conclusion $\neg q \to s$ by using valid propositional inference.

$$\begin{array}{ccc}
p & \to & q \\
\neg p & \to & r \\
r & \to & s
\end{array}$$

We next verify whether these premises lead to the conclusion $\neg q \rightarrow s$ by using valid propositional inference.

$$\begin{array}{ccc}
p & \to & q \\
\neg p & \to & r \\
r & \to & s
\end{array}$$

We next verify whether these premises lead to the conclusion $\neg q \rightarrow s$ by using valid propositional inference.

$$lacktriangledown q
ightarrow
abla p$$
 (contrapositive of 1)

$$\begin{array}{ccc} p & \rightarrow & q \\ \neg p & \rightarrow & r \\ r & \rightarrow & s \end{array}$$

We next verify whether these premises lead to the conclusion $\neg q \rightarrow s$ by using valid propositional inference.

$$\begin{array}{ccc} p & \rightarrow & q \\ \neg p & \rightarrow & r \\ r & \rightarrow & s \end{array}$$

We next verify whether these premises lead to the conclusion $\neg q \rightarrow s$ by using valid propositional inference.

$$\neg q \rightarrow \neg p$$
 (contrapositive of 1)
$$\neg q \rightarrow r$$
 (hypothetical syllogism from 4 and 2)

Propositional Logic 3

Therefore the conclusion $\neg q \rightarrow s$ is *valid*.

→□▶→□▶→重▶→重▶

Exercise

Suppose we have the statements: "if today is raining and strong wind occurs, then there will be flood", "if there will be flood, then the people will suffer", "today strong wind occurs, but the people do not suffer".

Verify whether these statements lead to the conclusion: "today is not raining".

Exercise

Suppose we have the statements: "if today is raining and strong wind occurs, then there will be flood", "if there will be flood, then the people will suffer", "today strong wind occurs, but the people do not suffer".

Verify whether these statements lead to the conclusion: "today is not raining".

Solution: suppose p: "today is raining", q: "today strong wind occurs", r: "there will be flood", s: "the people will suffer". The premises can be written as

Exercise

Suppose we have the statements: "if today is raining and strong wind occurs, then there will be flood", "if there will be flood, then the people will suffer", "today strong wind occurs, but the people do not suffer".

Verify whether these statements lead to the conclusion: "today is not raining".

Solution: suppose p: "today is raining", q: "today strong wind occurs", r: "there will be flood", s: "the people will suffer". The premises can be written as

$$p \wedge q \rightarrow r$$

Exercise

Suppose we have the statements: "if today is raining and strong wind occurs, then there will be flood", "if there will be flood, then the people will suffer", "today strong wind occurs, but the people do not suffer".

Verify whether these statements lead to the conclusion: "today is not raining".

Solution: suppose p: "today is raining", q: "today strong wind occurs", r: "there will be flood", s: "the people will suffer". The premises can be written as

$$p \land q \to r$$
$$r \to s$$

Exercise

Suppose we have the statements: "if today is raining and strong wind occurs, then there will be flood", "if there will be flood, then the people will suffer", "today strong wind occurs, but the people do not suffer".

Verify whether these statements lead to the conclusion: "today is not raining".

Solution: suppose p: "today is raining", q: "today strong wind occurs", r: "there will be flood", s: "the people will suffer". The premises can be written as

$$p \land q \to r$$
$$r \to s$$
$$q \land \neg s$$

We next verify whether the premises lead to a conclusion

Exercise

Suppose we have the statements: "if today is raining and strong wind occurs, then there will be flood", "if there will be flood, then the people will suffer", "today strong wind occurs, but the people do not suffer".

Verify whether these statements lead to the conclusion: "today is not raining".

Solution: suppose p: "today is raining", q: "today strong wind occurs", r: "there will be flood", s: "the people will suffer". The premises can be written as

$$p \land q \to r$$
$$r \to s$$
$$q \land \neg s$$

We next verify whether the premises lead to a conclusion $\neg p$ by using valid propositional inference.

October 2023

48 / 56

MZI (Soc Tel-U) Propositional Logic 3

- $2 r \rightarrow s$

- (premise)
- (premise)
- $(\mathsf{premise})$

- $2 r \rightarrow s$
- $\bigcirc \neg s$

- (premise)
- (premise)
- (premise)
- $({\sf simplification \ from \ 3})$

- $r \rightarrow s$
- $\bullet \neg s$
- \bullet

- (premise)
 - (premise)
 - $(\mathsf{premise})$
- (simplification from 3)
- $(\mathsf{modus}\ \mathsf{tollens}\ \mathsf{from}\ 2\ \mathsf{and}\ 4)$

- $r \rightarrow s$
- \bigcirc $\neg s$
- lacksquare

- (premise)
 - (premise) (premise)
 - (simplification from 3)
- (modus tollens from 2 and 4)
- (modus tollens from 1 and 5)

- $r \rightarrow s$
- \bullet $\neg s$
- \bullet
- $\bigcirc \neg p \lor \neg q$

- (premise)
 - (premise) (premise)
 - (simplification from 3)
- (modus tollens from 2 and 4)
- (modus tollens from 1 and 5)
 - (De Morgan's law from 6)

- $\bigcirc q \land \neg s$
- \bullet $\neg s$
- $oldsymbol{0}$ $\neg r$
- $\bigcirc \neg p \lor \neg q$
- **3** q

- (premise)
- (premise)
- (premise)
- (simplification from 3)
- (modus tollens from 2 and 4)
- (modus tollens from 1 and 5)
 - (De Morgan's law from 6)
 - (simplification from 3)

- $r \rightarrow s$
- \bigcirc $\neg s$
- \bullet $\neg r$
- $\bigcirc \neg p \lor \neg q$
- q

Therefore the conclusion $\neg p$ is *valid*.

(premise)

(premise)

(premise)

- (simplification from 3)
- (modus tollens from 2 and 4)
- (modus tollens from 1 and 5)
 - (De Morgan's law from 6)
 - (simplification from 3)
- (disjunctive syllogism from 7 and 8).

Exercise

Verify whether the premises $(p \land q) \lor r$ and $r \to s$ lead to the conclusion $p \lor s$.

Exercise

Verify whether the premises $(p \land q) \lor r$ and $r \to s$ lead to the conclusion $p \lor s$.

Solution:

$$(p \land q) \lor r$$

(premise)

$$r \rightarrow s$$

(premise)

Exercise

Verify whether the premises $(p \land q) \lor r$ and $r \to s$ lead to the conclusion $p \lor s$.

Solution:

$$(p \land q) \lor r$$

$$r \rightarrow s$$

(distributive law from 1)

Exercise

Verify whether the premises $(p \land q) \lor r$ and $r \to s$ lead to the conclusion $p \lor s$.

Solution:

$$(p \land q) \lor r$$

$$r \rightarrow s$$

$$\bullet$$
 $\neg r \lor s$

(equivalence
$$r \to s \equiv \neg r \lor s$$
 from 2)

Exercise

Verify whether the premises $(p \land q) \lor r$ and $r \to s$ lead to the conclusion $p \lor s$.

$$(p \land q) \lor r$$

$$r \rightarrow s$$

$$oldsymbol{0}$$
 $p \lor r$

(equivalence
$$r \to s \equiv \neg r \lor s$$
 from 2)

Exercise

Verify whether the premises $(p \land q) \lor r$ and $r \to s$ lead to the conclusion $p \lor s$.

$$(p \land q) \lor r$$

$$r \rightarrow s$$

$$(p \lor r) \land (q \lor r)$$

$$\bullet$$
 $\neg r \lor s$

$$\bullet$$
 $s \vee \neg r$

(equivalence
$$r \to s \equiv \neg r \lor s$$
 from 2)

Exercise

Verify whether the premises $(p \land q) \lor r$ and $r \to s$ lead to the conclusion $p \lor s$.

$$(p \land q) \lor r$$

$$r \rightarrow s$$

$$(p \lor r) \land (q \lor r)$$

$$\bullet$$
 $\neg r \lor s$

$$oldsymbol{0}$$
 $p \lor r$

$$\bullet$$
 $s \vee \neg r$

$$0 p \vee s$$

(equivalence
$$r \to s \equiv \neg r \lor s$$
 from 2)

Exercise

Suppose we have the statements: "if today is snowing, then Alex will ski", "if today is not snowing, then Bryan will play hockey".

Verify whether these statements lead to the conclusion: "Alex will ski or Bryan will play hockey".

Exercise

Suppose we have the statements: "if today is snowing, then Alex will ski", "if today is not snowing, then Bryan will play hockey".

Verify whether these statements lead to the conclusion: "Alex will ski or Bryan will play hockey".

Solution: suppose p: "today is snowing", q: "Alex will ski", r: "Bryan will play hockey". The premises can be written as

Exercise

Suppose we have the statements: "if today is snowing, then Alex will ski", "if today is not snowing, then Bryan will play hockey".

Verify whether these statements lead to the conclusion: "Alex will ski or Bryan will play hockey".

Solution: suppose p: "today is snowing", q: "Alex will ski", r: "Bryan will play hockey". The premises can be written as

$$p \rightarrow q$$

Exercise

Suppose we have the statements: "if today is snowing, then Alex will ski", "if today is not snowing, then Bryan will play hockey".

Verify whether these statements lead to the conclusion: "Alex will ski or Bryan will play hockey".

Solution: suppose p: "today is snowing", q: "Alex will ski", r: "Bryan will play hockey". The premises can be written as

$$\begin{array}{ccc} p & \to & q \\ \neg p & \to & r \end{array}$$

We next verify whether these premises lead to the conclusion

Exercise

Suppose we have the statements: "if today is snowing, then Alex will ski", "if today is not snowing, then Bryan will play hockey".

Verify whether these statements lead to the conclusion: "Alex will ski or Bryan will play hockey".

Solution: suppose p: "today is snowing", q: "Alex will ski", r: "Bryan will play hockey". The premises can be written as

$$\begin{array}{ccc} p & \to & q \\ \neg p & \to & r \end{array}$$

We next verify whether these premises lead to the conclusion $q \lor r$ by using valid propositional inference.

$$p \rightarrow e$$

 $\begin{array}{cc} \bullet & p \rightarrow q \\ \bullet & \neg p \rightarrow r \end{array}$

(premise)

(premise)

(premise)

(premise)

(equivalence $p \to q \equiv \neg p \lor q$ from 1)

- (premise)
- \bigcirc $\neg \neg p \lor r$

(premise)

- (equivalence $p \to q \equiv \neg p \lor q$ from 1)
- (equivalence $\neg p \rightarrow r \equiv \neg \neg p \lor r \text{ from 2}$)

$$0 p \rightarrow q$$

- $oldsymbol{0}$ $p \lor r$

(equivalence $p \to q \equiv \neg p \lor q$ from 1)

(equivalence
$$\neg p \rightarrow r \equiv \neg \neg p \lor r \text{ from 2}$$
)

(double negation elimination $\neg \neg p$ from 4)

(premise)

$$0 p \rightarrow q$$

- $p \lor r$
- $0 q \lor r$

- (equivalence $p \to q \equiv \neg p \lor q$ from 1)
- (equivalence $\neg p \rightarrow r \equiv \neg \neg p \lor r \text{ from 2}$)
- (double negation elimination $\neg\neg p$ from 4)
 - (resolution from 5 and 3).

Contents

- Translation From Natural Language to Propositional Formulas
- 2 Case Study: System's Specifications Consistency
- Application of Formulas' Collection Consistency
- 4 Elementary Propositional Inference
- ⑤ Propositional Inference: Exercise
- 6 Problems in Propositional Inferences (Supplementary)

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A.

Andre's final grade is A.

Therefore, Andre studies regularly.

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A.

Andre's final grade is A.

Therefore, Andre studies regularly.

Solution:

• Suppose p: "Andre studies regularly" and q: "Andre's final grade is A".

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A. Andre's final grade is A.

Therefore, Andre studies regularly.

- Suppose p : "Andre studies regularly" and q : "Andre's final grade is A".
- In the above reasoning, we have the premises $p \to q$ and q, and also the conclusion p.

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A. Andre's final grade is A.

Therefore, Andre studies regularly.

- Suppose p: "Andre studies regularly" and q: "Andre's final grade is A".
- In the above reasoning, we have the premises $p \to q$ and q, and also the conclusion p.
- The above reasoning is not valid because $((p \to q) \land q) \to p$ is not a tautology (do you know why?).

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A. Andre's final grade is A.

Therefore, Andre studies regularly.

Solution:

- Suppose p: "Andre studies regularly" and q: "Andre's final grade is A".
- In the above reasoning, we have the premises $p \to q$ and q, and also the conclusion p.
- The above reasoning is not valid because $((p \to q) \land q) \to p$ is not a tautology (do you know why?).
- This type of incorrect reasoning is called the *fallacy of affirming the conclusion/ consequent* or *converse error*.

・ロト・1回ト・1回ト・1回ト・回・9900

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A.

Andre doesn't study regularly.

Therefore, Andre's final grade is not A.

Solution:

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A.

Andre doesn't study regularly.

Therefore, Andre's final grade is not A.

Solution:

• Suppose p: "Andre studies regularly" and q: "Andre's final grade is A".

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A.

Andre doesn't study regularly.

Therefore, Andre's final grade is not A.

- ullet Suppose p: "Andre studies regularly" and q: "Andre's final grade is A".
- In the above reasoning, we have the premises $p \to q$ and $\neg p$, and also the conclusion $\neg q$.

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A.

Andre doesn't study regularly.

Therefore, Andre's final grade is not A.

- Suppose p: "Andre studies regularly" and q: "Andre's final grade is A".
- In the above reasoning, we have the premises $p \to q$ and $\neg p$, and also the conclusion $\neg q$.
- The above reasoning is not valid because $((p \to q) \land \neg p) \to \neg q$ is not a tautology (do you know why?).

Exercise

Verify the validity of the following argument. Explain your answer.

If Andre studies regularly, then his final grade is A.

Andre doesn't study regularly.

Therefore, Andre's final grade is not A.

Solution:

- Suppose p: "Andre studies regularly" and q: "Andre's final grade is A".
- In the above reasoning, we have the premises $p \to q$ and $\neg p$, and also the conclusion $\neg q$.
- The above reasoning is not valid because $((p \to q) \land \neg p) \to \neg q$ is not a tautology (do you know why?).
- This type of incorrect reasoning is called the *fallacy of denying the* hypothesis/ antecedent or the inverse error.

Exercise

Verify the validity of the following argument.

If
$$\sqrt{2} > \frac{3}{2}$$
, then $(\sqrt{2})^2 > (\frac{3}{2})^2$. We know that $\sqrt{2} > \frac{3}{2}$. Consequently, $(\sqrt{2})^2 > (\frac{3}{2})^2$, or in other words $2 > \frac{9}{4}$.

Exercise

Verify the validity of the following argument.

If
$$\sqrt{2}>\frac{3}{2}$$
, then $\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. We know that $\sqrt{2}>\frac{3}{2}$. Consequently, $\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$, or in other words $2>\frac{9}{4}$.

Solution:

• Suppose $p:\sqrt{2}>\frac{3}{2}$ and $q:\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. Observe that q is also equivalent to $2>\frac{9}{4}$.

Exercise

Verify the validity of the following argument.

If
$$\sqrt{2} > \frac{3}{2}$$
, then $\left(\sqrt{2}\right)^2 > \left(\frac{3}{2}\right)^2$. We know that $\sqrt{2} > \frac{3}{2}$. Consequently, $\left(\sqrt{2}\right)^2 > \left(\frac{3}{2}\right)^2$, or in other words $2 > \frac{9}{4}$.

- Suppose $p:\sqrt{2}>\frac{3}{2}$ and $q:\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. Observe that q is also equivalent to $2>\frac{9}{4}$.
- The above reasoning has the premises $p \rightarrow q$ and p, and also the conclusion q.

Exercise

Verify the validity of the following argument.

If
$$\sqrt{2}>\frac{3}{2}$$
, then $\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. We know that $\sqrt{2}>\frac{3}{2}$. Consequently, $\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$, or in other words $2>\frac{9}{4}$.

- Suppose $p:\sqrt{2}>\frac{3}{2}$ and $q:\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. Observe that q is also equivalent to $2>\frac{9}{4}$.
- ullet The above reasoning has the premises p o q and p, and also the conclusion q.
- Therefore, the above reasoning is valid, because it is constructed from valid modus ponens rule.

Exercise

Verify the validity of the following argument.

If
$$\sqrt{2}>\frac{3}{2}$$
, then $\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. We know that $\sqrt{2}>\frac{3}{2}$. Consequently, $\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$, or in other words $2>\frac{9}{4}$.

Solution:

- Suppose $p:\sqrt{2}>\frac{3}{2}$ and $q:\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. Observe that q is also equivalent to $2>\frac{9}{4}$.
- ullet The above reasoning has the premises p o q and p, and also the conclusion q.
- Therefore, the above reasoning is valid, because it is constructed from valid modus ponens rule.
- ullet However, since p false, we cannot conclude that the reasoning conclusion is true.

←ロト→個ト→産ト→差ト 差 めなべ

Exercise

Verify the validity of the following argument.

If
$$\sqrt{2}>\frac{3}{2}$$
, then $\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. We know that $\sqrt{2}>\frac{3}{2}$. Consequently, $\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$, or in other words $2>\frac{9}{4}$.

Solution:

- Suppose $p:\sqrt{2}>\frac{3}{2}$ and $q:\left(\sqrt{2}\right)^2>\left(\frac{3}{2}\right)^2$. Observe that q is also equivalent to $2>\frac{9}{4}$.
- ullet The above reasoning has the premises p o q and p, and also the conclusion q.
- Therefore, the above reasoning is valid, because it is constructed from valid modus ponens rule.
- ullet However, since p false, we cannot conclude that the reasoning conclusion is true.
- Moreover, we can also verify that the conclusion of the reasoning, that is $2 > \frac{9}{4}$, is false.